
J
H
E
P
1
2
(
2
0
0
8
)
0
6
8

Published by IOP Publishing for SISSA

Received: June 18, 2008

Revised: October 21, 2008

Accepted: November 29, 2008

Published: December 16, 2008

Entanglement entropy of two dimensional systems

and holography

Georgios Michalogiorgakis∗
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1. Introduction and summary

One of the most interesting problems in theoretical physics surrounds black holes. The

nature of the entropy of the black holes, and its origin is still debated. Amazingly, it only

depends on the area of the horizon of the black hole

SB.H. =
A

4πGN
, (1.1)

i.e. only on the geometric nature of the theory. Another entropy, the geometric or entan-

glement entropy exists and exhibits similar geometric behavior. Let us imagine a quantum

field theory at some constant Euclidean time tE = tE,0 living on a manifold M and divide

the manifold in two sub manifolds A, B. The entanglement entropy measures how much

the quantum states of the two regions are entangled. Interestingly, a generic behavior for

the entanglement entropy is

SE.E ∼ γ
∂A

αd−2
+ subleading terms, (1.2)

where ∂A is the area of the boundary of A, α is a UV cutoff and d − 1 is the dimension

of M. The constant γ is generally non universal. This is very similar to the black hole

entropy and some identification of the UV cutoff with a Planck scale might reproduce (1.1).

Of course entanglement entropy has much broader interest. It can be used in condensed

matter and statistical physics as well. Most of the calculations that have been done are

for free theories or for theories with small interactions. Of particular interest are CFT’s

because one expects conformality to fix some aspects of the result.
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One would like to calculate the entanglement entropy of a given CFT, in the strong

coupling limit. Such a prescription exists [1, 2] for theories with gravitational duals. It

amounts to adding a term in the gravitational action of a d−1 dimensional surface term and

finding the surface with the minimal area. The entanglement entropy then is given by the

Nambu-Goto like action of this d − 1 dimensional surface. Since this is computed in AdS

space we recover the correct scaling. However, interestingly enough, in four dimensions

there is a discrepancy between the anomalies one generically expects from QFT and the

ones that are holographically realized [3], see [4] for some counterarguments.

Quite generally, on the QFT side the entanglement entropy is given by evaluating the

of the theory on a metric with a conical singularity, with a deficit angle δ = 2πǫ [5, 6].

Then, the entropy is given by

SE.E =

(

∂

∂ǫ
− 1

)

ǫ=0

W (Eα) , (1.3)

where W (Eα) is the effective action of the theory on the manifold with the conical singu-

larity. It should be noted that this formula is inspired by the analogous thermodynamics

formula for computing the entropy given a partition function.

Stherm. = −
(

β
∂

∂β
− 1

)

log Z . (1.4)

In the following we explore the extrapolation of this definition of entanglement entropy to

the holographic duals of some CFTs. In section (2), we a brief introduction to entanglement

entropy and the methods used to compute it. In section (3) we extend the prescription

for calculating the entanglement entropy to the holographic dual of the boundary CFT. In

section (4) an explicit calculation is carried for the CFT2/AdS3 system. In section (5) a

brief summary of the results and some future directions are given. Appendix (A) contains

a derivation for the BTZ case, illustrative of the general procedure used.

2. Calculation of entanglement entropy in QFT

In this section the earlier work of [5 – 8] is briefly summarised. Consider a QFT in a space

that is artificially divided in two manifolds A, B. Also, consider that the system is in a

pure state |Ψ〉. An observer that only has access to A will not be able to measure the

whole wavefunction but only the piece confined in his part of space. So let us define a new

density matrix

ρA = trB ρ (2.1)

where ρ is the density matrix

ρ = |Ψ〉〈Ψ| (2.2)

and it is understood that the trace is taken over all the states of the Hilbert space of B.

The entanglement entropy is just the von Neumann entropy of the reduced density matrix

SE.E.
A = − tr ρA log ρA . (2.3)

– 2 –



J
H
E
P
1
2
(
2
0
0
8
)
0
6
8

For a product state we have SE.E.
A = 0, while we expect the maximum value for a maximally

entangled state. The entanglement entropy has some interesting properties, such as SE.E
A =

SE.E
B . This explicitly shows that the entanglement entropy is non extensive. Note that this

equality is violated if the system is at finite temperature. Another interesting property is

strong subadditivity

SE.E.
A + SE.E.

A′ ≥ SE.E.
A∩A′ + SE.E.

A∪A′ . (2.4)

The last property has been linked to an entropic analog of the Zamolodchikov’s c theorem [9]

in two dimensions [10, 11].

Now, let us move on to properly calculating the entanglement entropy. For simplicity

we consider a bosonic theory with a complete set of commuting observables {φ̂(x)}, whose

eigenvalues are given by {φ(x)}. The evolution of the theory is governed by a Hamiltonian

Ĥ and the density matrix at some inverse temperature β is given by

ρ = ({φ(x′′)′′}, {φ(x′)′}) =
〈{φ(x′′)′′}|e−βĤ|{φ(x′)′}〉

Z(β)
, (2.5)

where Z(β) is the partition function. This also has an expression as a path integral

ρ =
1

Z

∫

[dφ(x, t)]
∏

x

δ(φ(x, 0) − φ(x′)′)
∏

x

δ(φ(x, β) − φ(x′′)′′)e−SE , (2.6)

where we have introduced the Euclidean action SE. The normalization is such that tr ρ = 1.

Now consider a single interval A = (u, v). A similar expression can be written for the

reduced density matrix ρA, but with sewing together only the points which do not belong

to A. Of course, this leaves open cuts in (v, u) for the Euclidean time tE = 0. The desired

trace tr ρn
A is computed by making n copies and sewing them together along the cuts. If

we denote by k the k-th copy then the sewing conditions are

φ′
k(x) = φ′′

k+1(x), φ′
n(x) = φ′′

1(x), x ∈ A . (2.7)

This way, we define a path integral on an n-sheeted manifold Rn, Zn(A). It is understood

that the primed fields are evaluated at a time tE = 0−, while the double primed ones are

evaluated at an infinitesimal positive time tE = 0+. It is more convenient to introduce a

new coordinate w

w = x + itE , (2.8)

and then the sewing conditions become

φk

(

e2πi(w − u)
)

= φk+1(w − u), φk

(

e2πi(w − v)
)

= φk−1(w − v) . (2.9)

The trace of the density matrix becomes

tr ρn
A =

Zn(A)

Zn
1

. (2.10)

In [6], whose discussion we have closely followed, some arguments are given that the above

quantity is analytic for Re(n) > 1 and that its derivative with respect to n does exist
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Figure 1: A conformal transformation that takes us from Rn to C for n = 3. For the calculation

of the entanglement entropy of an interval (v, u) the required transformation is given by
(

w−u
w−v

)1/n

.

It is understood that when circling around one endpoint, one ascends to the next sheet or descends

to the previous one. More specifically (2.9) suggests that when circling around x = u one ascends

to the next sheet, while when circling around x = v one descents to the previous one.

and is analytic in the same region. Moreover the derivative at n = 1 precisely gives the

entanglement entropy

SE.E.
A = − lim

n→1

∂

∂n

Zn(A)

Zn
1

. (2.11)

In order to practically compute the entanglement entropy, Calabrese and Cardy in [6]

propose as a first step a conformal transformation that transforms the initial space Rn to

C. Then, it is argued that the ratio of the two partition functions of (2.11) is the same

as the correlation functions arising from the insertion of primary scaling operators at the

points v, u. We will take a different route and argue that the entanglement entropy is

given by computing the effective action of the CFT WC(n) on C and taking the derivative

with respect to ǫ = n − 1, as in (1.3). Note that C inherits the metric from the conformal

transformation from Rn.

Since we now have a CFT on a curved background, it is expected that the entanglement

entropy will be dominated by the conformal anomaly. The variation of the entropy with

respect to the length of A is similar to a Weyl variation and so, for L = |u − v|

L
d

dL
SE.E
A ∼

∫

〈T µ
µ 〉 ∼

∫

R . (2.12)

Let us examine this process for a simple case. Specifically, if one starts from a single

interval on a infinite space and zero temperature, the process of ”uniformising” is achieved

by

z =

(

w − u

w − v

)1/n

. (2.13)

If the initial manifold is at a temperature T = 1
β then we first need to transform

w′ =
β

2π
log w (2.14)
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and then uniformise as in the previous example. A similar procedure is applied if the

manifold has space periodicity R and is at zero temperature, replacing R → iβ in the

previous formulas. A schematic of this transformation is presented in figure (1).

The result of the whole procedure can be summarised by the value of the entanglement

entropy for some specific cases. For the single interval we have

SE.E.
A =

c

3
log

L

α
+ c1 , (2.15)

where α is the UV cutoff and the finite part c1 is depended on the details of the theory,

and is not universal. Similarly for finite temperature we have

SE.E.
A =

c

3
log

(

β

πα
sinh

(

πL

β

))

+ c2 , (2.16)

where c2 is also a non universal quantity.

3. Extension to holographic theories

The AdS/CFT correspondence [12] teaches us that there is a duality between string theory

living in asymptotically AdS spaces and a conformal field theory living on the boundary.

The question of the exact correspondence between quantities in the CFT and quantities

of the string theory is an interesting one. Fortunately it has been known from the early

days of the correspondence that the partition function of the CFT is related to the string

theory action [13, 14] (for a review of the correspondence see [15]). Explicitly

ZCFT(h) = ZS(h) (3.1)

where ZCFT(h) is the partition function of the CFT on a manifold with conformal structure

h. ZS is the exponential of the action of string theory integrated over all metrics that have

a double pole on the boundary and induce the given conformal structure. In the limit

of large N and small curvatures the latter becomes the effective low energy supergravity

action.

ZS(h) = e−Ssugra(g) , (3.2)

with g a solution of Einstein’s equations with the expected boundary behavior.

It is straightforward to extend the definition of the entanglement entropy to the bulk

theory. As has been observed before [3, 16], we argue that the following procedure should

be followed in order to calculate the entanglement entropy holographically:

• Define the theory on the boundary with a metric that has the required conical sin-

gularity gǫ,∂M.

• Find a bulk metric with the desired asymptotic behavior. One can proceed and

holographically reconstruct the bulk metric, as is explained for example in [17, 18].

Choosing Fefferman-Graham coordinates [19], each term of the series in ρ can be

determined algebraically from the previous one. This is a well defined procedure for

an integer n and the result is analytically continued to arbitrary n. It could be argued

that this step is not well defined for arbitrarily small ǫ = n−1, since in higher orders

in ρ one would introduce more severe singularities.

– 5 –
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• Finally one needs to evaluate the bulk action

Sbulk =
1

16πGN

∫

N

√

−det(g) (R + 2Λ) +
1

8πGN

∫

∂N

√

−det(h)Θ . (3.3)

to first order in the deficit angle ǫ and compute the entanglement entropy from

SE.E. =

(

∂

∂ǫ
− 1

)

ǫ→0

Sbulk . (3.4)

R is the Ricci scalar and Θ is the extrinsic curvature on the boundary.

Additionally to this straightforward attack on the problem, an alternative has been

proposed. It has been argued recently [1, 2] that the entanglement entropy can be com-

puted holographically by minimizing a d − 1 dimensional surface that has as a boundary

∂A. Some arguments are given in [16] that the prescription of the previous section re-

produces the Ryu-Takayanagi proposal. However, there is an ”ad hoc” addition to the

bulk action. This proposal gives the expected results for d = 2 theories and proposes

reasonable entanglement entropies for higher dimensional CFT’s or generically theories

with gravitational duals. It has been used for a variety of very interesting computations,

that extend from suggesting that entanglement entropy can be used for an order param-

eter for confinement/deconfinement [20, 21] to examining aspects of black holes [22], see

also [23 – 29, 29, 30] for similar lines of thought.

The analytic structure of both conformal and Graham-Witten anomalies [19] for the

Ryu-Takayanagi proposal in d = 4 dimensions has been examined in [3], note also the

counterarguments of [4].1 There, a mismatch has been found between the holographic

Ryu-Takayanagi prescription and the usual QFT entanglement entropy calculation. A

possible resolution could be that the replica trick fails in higher dimensions. Another one

could be that the Ryu-Takayanagi prescription calculates some other Wilson loop type of

observable. The proposal of this paper evades these problems, since the anomalies will

match by construction. In a sense, the anomalies of the boundary theory dictate the

anomalies of the bulk. The most interesting cases would be to examine the results of d = 4

and see whether there is agreement between the two approaches. We will examine here

only the case of d = 2 as an exercise of implementing the approach. Unfortunately the

technical difficulty of finding bulk solutions increases with the dimension.

Another nice application of the formulation of this section is that it is inherently easy

to tackle time dependent backgrounds. As noted in [31], in two dimensions it is possible

to derive the entanglement entropy of a time dependent manifold. In [24], the prescription

of [1, 2] has been extended to these situations. In principle there should be a direct

connection between that approach and the proposal followed here. Finally, one should also

note that it is possible to follow these three steps for an arbitrary integer n. Then in the

last step one should use the derivative with respect to n to derive the Tsallis entropy [32].

STs. =
tr ρn

A − 1

n − 1
. (3.5)

1I am grateful to A. Schwimmer for discussions regarding the issues of anomalies.
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4. Calculation in two dimensional CFTs and their holographic duals

In this section we explore the definition of (3.4) specifically for two dimensional CFTs.

Generically one expects such CFTs to be dual to a theory in an AdS3 × K background.

We will ignore the complexities that arise from including higher dimensions and will only

deal with asymptotically AdS3 geometries.

One way to circumvent the discrepancy in the anomalies between the holographic

prescription and the QFT calculation is to try to find a bulk solution that asymptotically

aproaches the metric with the required conical singularity in the boundary. In this way one

has a matching of anomalies on the two sides “by construction“. In order to explore this

possibility let us work in the case where the boundary theory is a CFT in 2 dimensions and

the bulk solution is an asymptotically AdS3 spacetime. In this case there is no problem

in the anomaly matching since it is almost trivial, but we would like to see whether this

direct approach makes sense. We are working in the Fefferman-Graham coordinates and

the metric can be expanded as

ds2 =
ℓ2dρ2

4ρ2
+

gij(x
k, ρ)dxidxj

ρ
, (4.1)

where the d dimensional metric, itself can be expanded as

gij = g0,ij + ρg2,ij + ρ2g4,ij + O
(

ρ3
)

. (4.2)

The case of d = 2 is of particular interest. As explained in [17] the series terminates at g4.

The whole metric is given by

g =
(

1 +
ρ

2
g2g

−1
0

)

g0

(

1 +
ρ

2
g−1
0 g2

)

. (4.3)

One only needs to determine g2. Let us quickly review how this is done [17]. The second

component of the metric g2 is given by

g2,ij =
ℓ2

2
(R0g0,ij + Tij) , (4.4)

where Tij is a symmetric traceless tensor that is given by

Tij =
1

2
∇iφ∇jφ + ∇i∇jφ − 1

2
g0,ij

(

1

2
(∇φ)2 + 2�φ

)

. (4.5)

The scalar field φ satisfies

�φ = R0 . (4.6)

It should be noted that it is allowed to add the stress energy tensor of arbitrary conformal

matter to Tij, or put differently, to add a traceless convariantly conserved tensor. This fact

should be taken into account when constructing bulk solutions. Following the prescription,

we are interested in finding a solution that has a boundary metric with a conical singularity

ds2 = g0,ijdxidxj = (zz̄)n−1f ′(zn)f ′(z̄n)dzdz̄ (4.7)

– 7 –
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and in particular in taking the limit n − 1 = ǫ → 0. Since it is natural to uniformise the

interval A we allow for a conformal transformation that takes care of this. In the following,

we will only examine the case of small ǫ and expand all quantities in an ǫ series. It is very

convenient to write

ds2 = g0,ijdxidxj = f ′(z)f ′(z̄) (1 − ǫG(z, z̄)) dzdz̄ (4.8)

where

G(z, z̄) = − log(zz̄) − z log zf ′′(z)

f ′(z)
− z̄ log z̄f ′′(z̄)

f ′(z̄)
. (4.9)

We expect the Riemann and Ricci tensor to have derivatives of G(z, z̄). It is straightforward

to calculate that
∂2G

∂z∂z̄
= − ∂2

∂z∂z̄
log zz̄ = −2πδ2(z, z̄) . (4.10)

In Einstein’s equations of the bulk solution one also finds other derivatives of G, such as

G2,1, G1,2 and so on. These should be interpreted as derivatives of Dirac’s delta function.
∫

dzdz̄G2,1(z, z̄)F (z, z̄) = −
∫

dzdz̄G1,1(z, z̄)F 1,0(z, z̄) = 2πF 1,0(0, 0) . (4.11)

For the metric (4.8) the Ricci scalar is easily computed to be

R0 = ǫ
∂2

z,z̄G(z, z̄)

f ′(z)f ′(z̄)
. (4.12)

and (4.6) gives
∂2

z,z̄φ(z, z̄)

f ′(z)f ′(z̄)
= ǫ

∂2
z,z̄G(z, z̄)

f ′(z)f ′(z̄)
; . (4.13)

with solution

φ(z, z̄) = φbackgr.(z, z̄) + ǫG(z, z̄) . (4.14)

The background metric satisfies

�φbackgr. = 0 (4.15)

and allows for a non trivial asymptotically AdS metric. In appendix (A) it is demonstrated

how, for example, the BTZ black hole solution is generated. The next step is to calculate

g2 to order ǫ. For simplicity let us write

φbackgr.(z, z̄) = Az + Āz̄ + Γ . (4.16)

The second term in the metric expansion is then found to be

g2,ij =

(

1
4A2ℓ2 + ǫ ℓ2

2

(

A∂zG + ∂2
z,zG

)

ǫ ℓ2

2 ∂2
z,z̄G

ǫ ℓ2

2 ∂2
z,z̄G

1
4Ā2ℓ2 + ǫ ℓ2

2

(

Ā∂z̄G + ∂2
z̄,z̄G

)

)

. (4.17)

Finally one is ready to write down the whole bulk solution metric

ds2 =
ℓ2dρ2

4ρ2
+

gijdxidxj

ρ
=

ℓ2dρ2

4ρ2
+

(

g0,ij + ρg2,ij + ρ2g4,ij

)

dxidxj

ρ
(4.18)
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where g0 is given in (4.8), g2 in (4.18) and g4 has the more complicated form

g4,ij =
ℓ4

128f ′(z)f ′(w)
· (4.19)

·
(

4A2ǫ∂2
zz̄G A2Ā2(1+ǫG) + 2ǫAĀ2∂zG+2ǫA2Ā∂z̄G+2ǫA2∂2

z̄G+2ǫĀ2∂2
zG

g4,zz̄ 4Ā2ǫ∂2
zz̄G

)

,

where the off-diagonal element has not been written twice. It is a straightforward but

painstaking exercise to verify that (4.18)–(4.19) is a solution to Einstein’s equations

to order ǫ

Rµν − 1

2
Rgµν = Λgµν + O(ǫ2) . (4.20)

4.1 Calculating the holographic entanglement entropy

Now all the tools necessary for evaluating the entanglement entropy are in order. The

required action (3.3)

Sbulk =
1

16πGN

∫

N

√

−det(g) (R + 2Λ) +
1

8πGN

∫

∂N

√

−det(h)Θ . (4.21)

We only need to evaluate this action to first order in ǫ. Since Einstein’s equations are

satisfied to order ǫ we have

Rµν − 1

2
Rgµν = Λgµν + O(ǫ2) ⇒ R = − 6

ℓ2
+ O(ǫ2) . (4.22)

Then we need to calculate the determinant and the extrinsic curvature term. The results

presented here are in a Laurent series in ǫ and ρ. Since

√

−det(g) =
ℓf ′(z)f ′(z̄)(1 − ǫG(z, z̄))

ρ2
+ ǫ

ℓ3G1,1(z, z̄)

4ρ
+ O(ǫ2, ρ0) , (4.23)

the first term evaluates to

S1 = − 1

2πGN

∫

∂N
dzdz̄

(

f ′(z)f ′(z̄)(1 − ǫG(z, z̄))

ℓρmin
+ ǫ

ℓ

4
G1,1(z, z̄) log

ρmax

ρmin

)

+ O(ǫ2, ρ1
min) .

(4.24)

We have also omitted the terms that are of order O( 1
ρmax.

). The finite terms are known,

but are very complicated to write down explicitly for the general case here. In order to

calculate the extrinsic curvature part of the action one needs to find the normal to the

surface ρ = const., nµ and then the extrinsic curvature is given by

Θµν = −1

2
(∇νnµ + ∇µnν) . (4.25)

For the specific case of the boundary being the surface ρ = const. the unit normal is

nµ =
2ρ

ℓ
δµ
ρ . (4.26)

It is easy to calculate the extrinsic curvature and it turns out to be

Θij = −ρ

ℓ
∂ρ

g0,ij + ρg2,ij + ρ2g4,ij

ρ
=

g0,ij − ρ2g4,ij

ℓρ
. (4.27)
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We take the boundary of N to be at a finite ρ = ρmin, and the second part of the action,

to first order in ǫ becomes

S2 =
1

2πGN

∫

∂N
dzdz̄

(

1

ℓρmin
f ′(z)f ′(z̄)(1 − ǫG(z, z̄) + 4ℓǫG1,1(z, z̄)

)

+ O(ǫ2, ρ1
min) .

(4.28)

Combining the two terms and using (4.21)

Sbulk = − 1

8πGN

∫

∂N
dzdz̄ǫℓG1,1(z, z̄)

(

log
ρmax

ρmin
+

1

4

)

+ O(ǫ2, ρ0
min) . (4.29)

The numerical factor 1
4 can be grouped with the rest of the finite ρ0

min terms and will be

ignored for now. Finally using the result of Brown and Henneaux [33]

c =
3ℓ

2GN
, (4.30)

(4.29) evaluates to

Sbulk = − c

12π

∫

∂N
dzdz̄ǫG1,1(z, z̄) log

ρmax

ρmin
+ O(ǫ2, ρ0

min) . (4.31)

Of course, alternatively one can use the result of [34], whose derivation of (4.30) this paper

closely follows. Finally we need to use that G1,1(z, z̄) = −2πδ2(z, z̄) and that the cutoff

ρmin is related to the usual UV cutoff with

ρmin = α2 (4.32)

to derive

SE.E.
hol. =

c

3
log

√
ρmax

α
+ finite . (4.33)

For the case of pure AdS3 it is reasonable to take
√

ρmax ∼ L. For the non-rotating BTZ

black hole, we just integrate up to the location of the horizon
√

rmax = 1
r+

∼ β, see ap-

pendix (A). When the temperature is larger than the periodicity of the angular coordinate

θ, l, which is the case when the BTZ solution should be used, then these both repro-

duce (2.15)–(2.16). It should be noted that the procedure followed in this paper does not

separate between the different finite parts, as is the usual case in other computations [6, 1]

SE.E. =
c

3

(

log
1

α
+ log L

)

+ finite, SE.E. =
c

3

(

log
1

α
+ log

β

π
sinh

(

πl

β

))

+ finite ,

(4.34)

for the cases of pure AdS and the BTZ black hole.

We should note here that currently there is no rigorous way to find ρmax.. One would

hope that it will come directly from some requirement, such as regularity for the solution

for the bulk metric. Finding the proper prescription for determining ρmax does not seem

possible in the current set up, since the “uniformisation“ process has sent the boundary

points of A from u = 0, v = L to 0 and ∞ respectively. Once ρmax is properly determined,

the finite part of entanglement entropy will also be known and calculable. As far as finite

parts of the entanglement entropy are concerned, holographic renormalization should also

be taken into account, as counterterms will contribute to the finite part of the bulk action.
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5. Conclusions and discussion

In this note we have examined a straightforward approach to computing the entanglement

entropy holographically. For two dimensions the known results are reproduced. However

the most interesting cases are the higher dimensional ones. In view of the results of [3],

the prescription of [1, 2] does not have the same analytic structure as the boundary theory

predicts. It could be that the prescription describes some other Wilson loop type of ob-

servable. Another possibility is that the replica trick fails in higher dimensions. One could

calculate the entanglement entropy, with and without the replica trick and compare them.

Unfortunately even for the simple case of a free boson and a sphere, it appears that only

a numerical computation is possible.

A way in which the replica trick could fail in higher dimensions is that there is no

analytic continuation from integer to real values of n. If we have a massless boson in four

dimensions, we can transform the evaluation of the entanglement entropy by dimensionally

reducing the theory to two dimensions. Then, the entanglement entropy of an infinite tower

of massive bosons has to be computed. We already know that the calculation for certain two

dimensional massive theories involves a highly non trivial analytic continuation. Indeed,

some massive two dimensional quantum integrable systems were examined in [35]. The

analytic structure of the two point funtion of the energy momentum tensor was examined

and it was found that there is no natural analytic continuation from n = 1, 2, 3 . . . to

[1,∞). However there is a unique analytic continuation from n = 2, 3, . . . to [1,∞), if

certain assumptions for the behavior at infinity are made. Interestingly, in those models

kinematic singularities also contribute to the analytic structure of the two point function.

One would expect that similar treatment for the analyticity properties has to be followed

for the higher dimensional theories.

Another way to try to derive the Ryu-Takayanagi proposal would be the following.

When the switch to the singular metric is done one adds to the boundary metric a localized

small perturbation ǫgsing.,ij. This would amount to adding a localized stress-energy tensor

operator Tij to the boundary. Then the partition function will have to be calculated with

an insertion of this operator. This is reminiscent of the method used in [6, 7] for d = 2,

but it is unclear to me how to generalize this to an arbitrary higher dimension.

The next step is therefore to examine how to implement this direct approach to calcu-

lating the entanglement entropy in higher dimensions. Generically one does not expect the

Taylor series of gij in terms of ρ to terminate at a finite number of steps, see for example

the approach of [18]. Adding a small singular term to the boundary metric complicates

things. As the case of d = 2, one would expect the higher order terms to be derivatives of

the lower order ones and that this will produce an increasingly more singular behavior in

the metric. However, some certain simple situations like a sphere or a cylinder on an non

thermal background should have a simple answer. In a certain sense, in two dimensions one

is bound to find the correct answer, since the result is governed by the conformal anomaly.

In higher dimensions, where the structure of the anomalies is much richer, it is uncertain

whether a given holographic prescription calculates the quantity with the correct analytic

structure. The advantage of the prescription followed in this note is that the analytic

structure of the CFT quantity and the holographic answer are the same by construction.
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Another interesting aspect of entanglement entropy has to do with black holes. It has

been argued that in some cases the entropy of the black hole is the entanglement entropy

between the states living inside and outside the horizon, see [36] for a cosmological horizon

example and [37] for a black hole in a Randall-Sundrum scenario. Certain two dimensional

models exhibit many of the interesting features of black hole formation, Hawking radiation

and so on, for a review see [38]. It would be intriguing to find a holographic dual for these

two dimensional models. We leave some of these very interesting questions for future work.
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A. The (non-rotating) BTZ black hole in Fefferman-Graham coordinates

In this appendix we derive the BTZ black hole using the methods of [17]. One only has to

assume that the asymptotic boundary metric is of the form

ds2 = (dτ2 + dθ2) . (A.1)

Then the equation that needs to be satisfied by the scalar φ is

�φ = R0 = 0 (A.2)

with a general solution

φ = Aθ + Bτ + Γ . (A.3)

We take the periodicity in the θ coordinate to be large, so as not to worry about boundary

conditions. For the same reason let us also choose B = 0. Γ has no effect on the solution

and can be conveniently dropped. It is straightforward to write the second component of

the metric as

g2 =

(

ℓ2A2/8 0

0 ℓ2A2/8

)

. (A.4)

Then, the prescription gives the metric

ds2 =
ℓ2dρ2

4ρ2
+

(

ρ(ℓ/2A)2 + 1
)2

dθ2 + (ρ(ℓ/2A)2 − 1)2dτ2

4ρ
. (A.5)

With the identification

A = 2r+/ℓ (A.6)

and the change of coordinates to

ρ =

(

r +
√

r2 − r2
+

)−2

(A.7)
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the metric is brought to the familiar form

ds2 =
ℓ2dr2

r2 − r2
+

+
(

r2 − r2
+

)

dτ2 + r2dθ2 . (A.8)

The ρ coordinate takes values between

ρ ∈ (0, ρ+) , (A.9)

where ρ+ is the location of the horizon

ρ+ =
1

r2
+

. (A.10)

Keeping also a non zero B, one can reproduce the rotating black hole solution.
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95.

[20] T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01

(2007) 090 [hep-th/0611035].

[21] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140].

[22] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as

entanglement entropy via AdS2/CFT1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956].

[23] V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions,

JHEP 03 (2008) 006 [arXiv:0711.4118].

[24] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016].

[25] A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07

(2008) 097 [arXiv:0805.1891].

[26] J.L.F. Barbon and C.A. Fuertes, Holographic entanglement entropy probes (non)locality,

JHEP 04 (2008) 096 [arXiv:0803.1928].

[27] T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of

boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850].

[28] M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of

entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719].

[29] M. Cadoni, Entanglement entropy of two-dimensional Anti-de Sitter black holes, Phys. Lett.

B 653 (2007) 434 [arXiv:0704.0140].

[30] T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy,

JHEP 02 (2007) 042 [hep-th/0608213].

[31] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems,

J. Stat. Mech. (2005) P04010 [cond-mat/0503393].

[32] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479.

[33] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic

symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986)

207.

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C323%2C183
http://arxiv.org/abs/hep-th/9905111
http://jhep.sissa.it/stdsearch?paper=09%282006%29018
http://jhep.sissa.it/stdsearch?paper=09%282006%29018
http://arxiv.org/abs/hep-th/0606184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB472%2C316
http://arxiv.org/abs/hep-th/9910023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C217%2C595
http://arxiv.org/abs/hep-th/0002230
http://jhep.sissa.it/stdsearch?paper=01%282007%29090
http://jhep.sissa.it/stdsearch?paper=01%282007%29090
http://arxiv.org/abs/hep-th/0611035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB796%2C274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB796%2C274
http://arxiv.org/abs/0709.2140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C064005
http://arxiv.org/abs/0710.2956
http://jhep.sissa.it/stdsearch?paper=03%282008%29006
http://arxiv.org/abs/0711.4118
http://jhep.sissa.it/stdsearch?paper=07%282007%29062
http://arxiv.org/abs/0705.0016
http://jhep.sissa.it/stdsearch?paper=07%282008%29097
http://jhep.sissa.it/stdsearch?paper=07%282008%29097
http://arxiv.org/abs/0805.1891
http://jhep.sissa.it/stdsearch?paper=04%282008%29096
http://arxiv.org/abs/0803.1928
http://jhep.sissa.it/stdsearch?paper=03%282008%29054
http://arxiv.org/abs/0712.1850
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C106013
http://arxiv.org/abs/0704.3719
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB653%2C434
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB653%2C434
http://arxiv.org/abs/0704.0140
http://jhep.sissa.it/stdsearch?paper=02%282007%29042
http://arxiv.org/abs/hep-th/0608213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0504%2CP010
http://arxiv.org/abs/cond-mat/0503393
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTPB%2C52%2C479
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C104%2C207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C104%2C207


J
H
E
P
1
2
(
2
0
0
8
)
0
6
8

[34] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087].

[35] J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in

quantum integrable models and entanglement entropy, arXiv:0706.3384.

[36] S. Hawking, J.M. Maldacena and A. Strominger, DeSitter entropy, quantum entanglement

and AdS/CFT, JHEP 05 (2001) 001 [hep-th/0002145].

[37] R. Emparan, Black hole entropy as entanglement entropy: a holographic derivation, JHEP 06

(2006) 012 [hep-th/0603081].

[38] A. Strominger, Les Houches lectures on black holes, hep-th/9501071.

– 15 –

http://jhep.sissa.it/stdsearch?paper=07%281998%29023
http://arxiv.org/abs/hep-th/9806087
http://arxiv.org/abs/0706.3384
http://jhep.sissa.it/stdsearch?paper=05%282001%29001
http://arxiv.org/abs/hep-th/0002145
http://jhep.sissa.it/stdsearch?paper=06%282006%29012
http://jhep.sissa.it/stdsearch?paper=06%282006%29012
http://arxiv.org/abs/hep-th/0603081
http://arxiv.org/abs/hep-th/9501071

